<table>
<thead>
<tr>
<th>GRADE 3</th>
<th>COMMON CORE STANDARD</th>
<th>LEARNING TARGETS (I can . . . by the end of the lesson)</th>
<th>CRITERIA FOR SUCCESS (I will . . . checklist of steps for outcome)</th>
</tr>
</thead>
</table>
| 3.OA 1. | Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 x 7. | I can represent multiplication situations with a model. | ___ I will discuss the meaning of multiplication in terms “groups of” with a partner.
___ I will make a model (picture or manipulatives) to show multiplication means a specific number of groups with the same number in each group.
___ I will write an equation to match the multiplication model.
___ I will explain with a partner how the model created represents the product. |
| 3.OA 2. | Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. | I can represent division situations with a model. | ___ I will discuss the meanings of division in terms of “how many equal groups can be made(repeated subtraction)” or “how many are in each group so they are equal(measurement partition)”
___ I will make a model (picture or manipulatives) to show the division situation.
___ I will explain with a partner how the model created to represent a quotient. |
| 3.OA 3. | Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. | I can solve word problems involving multiplication and division. | ___ I will discuss with a partner the situation in the problem.
___ I will represent the problem with a model (pictures or manipulatives).
___ I will use a symbol to represent the unknown.
___ I will choose the correct operation for a given situation.
___ I will compute and explain why the solution makes sense. |
| 3.OA 4. | Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 x ? = 48, 5 = □ ÷ 3, 6 x 6 = ? | I can solve missing factor equations. | ___ I will identify how the numbers in an equation are related through the operation of multiplication.
___ I will use the sentence frame _____ groups of _____ is the same value as ____ to reason about the missing factor.
___ I will explain how finding the unknown factor makes the equation true using a model (picture or manipulative). |
| | | I can solve missing dividend or divisor equations. | ___ I will identify how the numbers in an equation are related -through the operation of division.
___ I will explain how to solve for the unknown in a division equation using what I know about multiplication.
___ I will make a model to prove the equation is true. |
<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
<th>I can use properties as strategies to multiply or divide.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand properties of operations as strategies to multiply and</td>
<td>Examples: if (6 \times 4 = 24) is known, then (4 \times 6 = 24) is also known. (Commutative property of</td>
<td>_I will write down the multiplication or division fact and solve using a property (rule). _I will make a model using pictures or manipulatives to find the solution. _I will explain to a partner how the property (or rule) works. _I will find another way to solve the multiplication or division fact using a different property. a. commutative property b. associative property c. distributive property _I will justify which strategy is more effective.</td>
</tr>
<tr>
<td>divide.</td>
<td>multiplication.) 3 (x) 5 (x) 2 can be found by (3 \times 5 = 15), then (15 \times 2 = 30), or by (5 \times 2 = 10), then (3 \times 10 = 30). (Associative property of multiplication.) Knowing that (8 \times 5 = 40) and (8 \times 2 = 16), one can find (8 \times 7) as (8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56). (Distributive property.)</td>
<td></td>
</tr>
<tr>
<td>3.OA 5. Apply properties of operations as strategies to multiply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and divide.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 6. Understand division as an unknown-factor problem. For</td>
<td></td>
<td></td>
</tr>
<tr>
<td>example, find (32 \div 8) by finding the number that makes 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>when multiplied by 8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 7. Fluently multiply and divide within 100, using strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>such as the relationship between multiplication and division (e.g.,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>knowing that (8 \times 5 = 40), one knows (40 \div 5 = 8) or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>properties of operations. By the end of Grade 3, know from memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all products of two one-digit numbers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 8. Solve two-step word problems using the four operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Represent these problems using equations with a letter standing for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the unknown quantity. Assess the reasonableness of answers using</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mental computation and estimation strategies including rounding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 9. Solve two-step word problems with different operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Represent these problems using equations with a letter standing for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the unknown quantity. Assess the reasonableness of answers using</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mental computation and estimation strategies including rounding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 10. Solve problems involving the four operations, and identify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and explain patterns in arithmetic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 11. Solve problems involving the four operations, and identify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and explain patterns in arithmetic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 12. Solve problems involving the four operations, and identify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and explain patterns in arithmetic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA 9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.</td>
<td>I can use and explain patterns on the addition table. ___I will identify a pattern in the addition table and explain it to a partner. ___I will use a pattern to make an expression or a rule in math and test it out using different numbers to see if it is true. ___I will explain why the pattern works based on properties related to addition and subtraction. I can show and describe patterns on the multiplication table. ___I will identify a pattern in the multiplication table and explain it to a partner. ___I will use a pattern to make an expression or a rule in math and test it out using different numbers to see if it is true. ___I will explain why the pattern works based on properties related to multiplication and division.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3.NBT 1. Use place value understanding to round whole numbers to the nearest 10 or 100.</td>
<td>I can round whole numbers to the nearest 10 or 100. ___I will define what it means to “round” a number and discuss with a partner how rounding is used in the real world. ___I will identify the tens and hundreds place in the number to be rounded. ___I will choose to round the number to the nearest 10 or nearest 100. ___I will create a number line using rounded numbers as benchmarks. ___I will label the original number on a number line correctly between the rounded values. ___I will determine the rounded number using the number line to visualize which is nearer to and justify my thinking.</td>
<td></td>
</tr>
<tr>
<td>3.NBT 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.</td>
<td>I can add 2- and 3-digit numbers fluently. ___I will use the expanded method to add each place value. ___I will check my work using another strategy. ___I will explain my strategy to a partner based on place value or a property for the operation. I can subtract 2- and 3-digit numbers fluently. ___I will use the break apart method to decompose each number based on place values. ___I will make a model to prove my solution. ___I will check my work using addition or another strategy. ___I will explain my strategy to a partner based on place value; the property of operation; or the relationship to addition.</td>
<td></td>
</tr>
<tr>
<td>3.NBT 3. Multiply one-digit whole numbers by multiples of 10 in the range of 10-909 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations.</td>
<td>I can multiply 1-digit whole numbers by multiples of 10. ___I will read the multiplication equation correctly using the sentence frame: 3 groups of 5 tens equals 150. ___I will write an equation using a property to show the product. Example: 3 x 50 = 3 x (5 x 10) = (3 x 5) x 10 = 15 x 10 = 150 ___I will explain to a partner the strategy based on place value by decomposing the product to show how it equals n tens. Example: 150 = 15 tens because I know 15 tens is 10 tens and 5 tens. I know 10 tens is 100 and 5 tens is 50 so 100 plus 50 equals 150.</td>
<td></td>
</tr>
<tr>
<td>3.NF 1. Understand a fraction 1/(b) and the quantity formed by 1 part when a whole is partitioned into (b) equal parts; understand a fraction (a/b) as the quantity formed by parts of size 1/(b).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| I can identify a unit fraction
__I will describe what a fraction is by modeling part of the whole.
__I will identify the denominator as the number of equal parts I divided the whole into.
__I will identify one part of the whole and label the numerator with 1 to show a unit fraction.
__I will discuss how unit fractions are alike and different depending upon the size of the whole and the number of equal sized parts.
Example: % of a cherry is different than % of a watermelon because the size of the whole is different, but they both represent one unit of the whole. |
| I can label the amount of unit fractions used to create a fraction.
__I will partition the whole into equal parts and tell how many equal parts make up the whole using pictures or manipulatives.
__I will identify the denominator as the number of equal parts I partitioned.
__I will identify the unit fraction as one part of the whole.
__I will build fractions from unit fractions to identify the numerator as the count of equal parts.
Example: % is the quantity you get when you put 3 of the \(1/4\) (unit fractions) together. |

<table>
<thead>
<tr>
<th>3.NF 2. Understand a fraction as a number on the number line; represent fractions on a number line diagram.</th>
</tr>
</thead>
</table>
| a. Represent a fraction 1/\(b\) on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into \(b\) equal parts.
Recognize that each part has size 1/\(b\) and that the endpoint of the part based at 0 locates the number 1/\(b\) on the number line.
| I can label fractions on a number line.
__I will discuss how fractions live between whole numbers on the number line.
__I will define the interval between 0 and 1 as the whole.
__I will partition the interval into equal parts.
__I will represent various fractions between 0 and 1 on the number line using fraction bars and label them.
| I can divide the number line into equal sized sections and label the sections.
__I will draw a linear model (number line) and identify the whole as the “interval from 0 to 1”.
__I will partition the interval into equal sized parts to get my denominator.
__I will label each part in fraction form using a numerator.
__I will tell how many of each fraction will be needed to make up a whole.
| I can identify the number of unit fractions shown by a fraction on a number line.
(Ex. \(3/4\) = 3 of the \(1/4\) intervals on the number line. If a number line has been divided into 4 equal parts and I jump 3 segments each 1/4, then the interval from 0 would represent \(3/4\).)
__I will identify the whole (interval between 0 and 1)
__I will identify the denominator after determining the number of partitions in the whole.
__I will show the unit fractions for each segment by marking off equal lengths on the number line.
__I will tell how many segments the fraction is located from 0 on the number line. |
| b. Represent a fraction \(a/b\) on a number line diagram by marking off \(a\) lengths 1/\(b\) from 0. Recognize that the resulting interval has size \(a/b\) and that its endpoint locates the number \(a/b\) on the number line. |

| Develop understanding of fractions as numbers. |
3.NF 3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

- **a.** Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
- **b.** Recognize and generate simple equivalent fractions, e.g., \(\frac{1}{2} = \frac{2}{4}, \frac{4}{6} = \frac{2}{3} \). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
- **c.** Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. *Examples: Express 3 as \(\frac{3}{1} \); recognize that \(\frac{6}{1} = 6 \); locate \(\frac{4}{4} \) and 1 at the same point on a number line diagram.*

I can model equivalent fractions.

- I will define and explain the vocabulary word, “equivalent”.
- I will identify equivalent fractions using fraction bars or a number line.
- I will tell how they are equal in size with fraction bars or at the same point on a number line.
- I will discuss how the form of the fraction may change but the value will stay the same.

I can create equivalent fractions.

- I will model equivalent fractions using manipulatives or drawings.
- I will explain why they are equivalent using the model.
- I will generate simple equivalent forms of a fraction.
- I will discuss how the value does not change even when the form of fraction does and use a visual fraction model to justify my thinking.

I can model whole numbers as fractions.

- I will explain how fractions are a result of dividing two numbers. (describe the relationship to division)
- I will recognize a whole number.
- I will model a whole number using fractions.
- I will express a whole number in a fraction form. (Ex. \(\frac{3}{1} \))
- I will identify equivalent fraction forms equal to one whole. (Ex. \(\frac{3}{3} = \frac{4}{4} = \frac{8}{8} = 1 \) whole)

3.NF 3. Compare two fractions with the same numerator or the same denominator by reasoning about their size.

- Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparison with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

I can use symbols (<, >, =) to compare 2 fractions.

- I will identify if the whole is the same size or different.
- I will look at the numerator and denominator to reason about the fractions.
- I will write a comparison statement using symbols (> greater than, < less than or = equal to).
- I will justify my thinking using a model to prove it.

3.MD 1. Tell and write time to the nearest minute and measure time intervals in minutes.

- Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.

I can tell and write time to the nearest minute.

- I will identify the intervals of time on a clock face.
- I will count by minutes to measure the time.
- I will write the time correctly using am or pm.
- I will justify the time using a number line (linear model) to show the intervals.
| Represent and interpret data. | I can represent time using a diagram to solve problems.
__ I will tell how I know the word problem involves elapsed time.
__ I will use a model or diagram (number line or clock face) to solve the problem.
__ I will measure with precision the time to the nearest minute.
__ I will write the time correctly and label using am or pm.

| 3.MD 2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. | I can measure liquid volumes of objects.
__ I will identify a benchmark for a gram, kilogram, and liter.
__ I will estimate the liquid volume of an object and write it down using the sentence frame: *I think the liquid volume of this object is about _____ because I know _____.*
__ I will use a graduated cylinder or beaker to measure to the liquid volume.
__ I will read the scale accurately and write the liquid volume using correct units (g, kg, L)
__ I will compare the estimation to the exact weight and discuss it with a partner.

| I can measure masses of objects.
__ I will identify a benchmark for a gram, kilogram, and liter.
__ I will estimate the weight (or mass) of an object and write it down using the sentence frame: *I think the weight of this object is about _____ (units) because I know ________.*
__ I will use a scale to precisely measure the mass (or weight) of an object.
__ I will read the scale accurately and write the weight (or mass) using correct units (g, kg, L)
__ I will compare the estimation to the exact weight and discuss it with a partner.

| I can solve one-step word problems involving mass or volume.
__ I will identify the unit of measure (g, kg, l) in the word problem.
__ I will draw a picture or use a picture as a model to help solve the problem.
__ I will write a number sentence using addition, subtraction, multiplication, or division to solve the word problem.
__ I will discuss the solution to the problem with a partner. |

| 3.MD 3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, *draw a bar graph in which each square in the bar graph might represent 5 pets.* | I can read the data correctly on a scaled pictograph and bar graph.
__ I will discuss the text features on the graph.
__ I will tell how the graph is scaled using the key on a pictograph or the axis on the bar graph.
__ I will show the value that each category of data represents.
__ I will compare the data represented on a pictograph and a bar graph to discuss how the displays are alike and different.

| I can draw a scaled pictograph to represent a data set.
__ I will create a question and collect the data using a survey.
__ I will organize the data using labels for the categories and a title for the graph. |
| 3.MD 4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units – whole numbers, halves, or quarters. | I can solve comparison problems based on bar graphs.
__I will discuss the text features (categories, data, title, scale, labels) on the bar graph to tell how they organize the data.
__I will tell how the bar graph is scaled and use that scale to find out the value that each bar of data represents.
__I will read and retell the question carefully to see if it is a one-step or two-step comparison problem.
__I will correctly compare the bars on the graph that represents the information in the problem.
__I will choose the correct operation to solve the comparison problems.

I can draw a scaled bar graph to represent a data set.
__I will create a question and collect the data using a survey.
__I will organize the data using labels for the categories on each axis and a title for the graph.
__I will represent the data using a scaled axis that shows more than one unit.
__I will display the data vertically or horizontally in a bar graph correctly. |
| --- | --- |
Geometric Measurement

3.MD 5. Recognize areas as an attribute of plane figures and understand concepts of area measurement.

- A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area
- A plane figure which can be covered without gaps or overlaps by \(n \) unit squares is said to have an area of \(n \) square units.

I can identify 1 square unit of area and measure the area of a plane figure with square units.
- I will show how area is an attribute of a plane figure by shading inside the region of a shape.
- I will cut out a plane figure and find the square units of area using grid paper or dot paper and use square tiles to cover the area without gaps or overlaps.
- I will count the number of square tiles to find the area.
- I will label the figure correctly in square units.
- I will explain how a square is the standard unit to measure area.

3.MD 6. Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).

I can measure area of a shape and assign the appropriate label.
- I will identify and explain the square unit of area being measured.
- I will make the standard square unit of area (square in., square cm, square ft., square m)
- I will count the number of square tiles accurately to find the area.
- I will correctly label the area with square cm, m, in, or feet.

3.MD 7. Relate area to the operations of multiplication and addition.

- Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
- Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
- Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths \(a \) and \(b + c \) is the sum of \(a \times b \) and \(a \times c \). Use area models to represent the distributive property in mathematical reasoning.
- Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping parts.

I can explain the rule for finding the area and perimeter of a rectangle using a formula with symbols.
- I will use tiles to cover the area of a rectangle without gaps or overlaps.
- I will tell how the opposite side lengths of the rectangles are similar and the adjacent side lengths different.
- I will count all the square units and then discuss how multiplication could be used to find the area by multiplying the adjacent sides together.
- I will count all the unit lengths and then discuss how addition could be used to find the perimeter by adding all the sides together.
- I will create a formula with symbols using multiplication for area and addition for perimeter.

I can solve real world math problems using a shortcut method (formula) for finding the area and perimeter.
- I will read the problem carefully and discuss the attribute (area or perimeter) being measured.
- I will draw and label a rectangular picture to represent the area of perimeter in the problem.
- I will not count the individual square units for area or unit lengths for perimeter.
- I will use the rules to find the area (\(A = l \times w \)) and/or the perimeter (\(P = l + w + l + w \)).

*Some students may also use \(P = 2(l + w) \)
<table>
<thead>
<tr>
<th>Recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.</th>
<th>3.MD.8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.</th>
</tr>
</thead>
</table>
| applying this technique to solve real world problems. | I can find the area of composed rectangular sections using multiplication and addition.
___ I will model the area of the rectangle figure using square tiles or drawing an array.
___ I will decompose one of the side lengths (if a 2 digit number... into tens and ones) by drawing a line to separate the factor and label it correctly.
___ I will multiply each new factor of the area model to show the partial product for each section.
___ I will add the partial products together to find the total area of the figure.
I can find the area of a rectilinear figure by decomposing it into rectangles.
___ I will draw a line to show how the figure could be sectioned into rectangles without overlapping parts of the figure.
___ I will label the length and the width of the composed rectangle sides.
___ I will model (formula or picture or tiles) the area of each rectangle section.
___ I will add the areas of the rectangle sections together to find the total area of the figure.
___ I will label my work accurately with the correct unit.
I can find the perimeter of a polygon given all the side lengths.
___ I will identify the perimeter as the distance around a figure by outlining the shape of the figure.
___ I will count all of the unit lengths (not the end points) in the outline and label with a number the measure of each side.
___ I will add each side measures together to find the perimeter of the figure.
___ I will label the figure with the correct unit of measurement.
___ I will generate a method for finding the perimeter of a figure.
I can compute the missing side of a polygon given the perimeter.
___ I will use pictures or manipulatives to find the missing length or width.
___ I will identify the total perimeter of the polygon and subtract the known length and/or width measurements from the whole.
___ I will use precision in calculating the perimeter.
___ I will label my work with the correct unit of measure.
I can find the relationship pattern between the area and perimeter structure of a rectangle.
___ I will find all possible rectangles with the same perimeter but different areas using manipulatives or drawings.
___ I will find all the possible rectangles with the same area but different perimeters using manipulatives or drawings.
___ I will explain the rectangle with the greatest area has side lengths (adjacent sides) close to each other.
___ I will explain the rectangle with the least perimeter has the side lengths (adjacent sides) close to each other. |
<table>
<thead>
<tr>
<th>Reason with shapes and their attributes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.G 1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.</td>
</tr>
<tr>
<td>I can sort 2-Dimensional figures.</td>
</tr>
<tr>
<td>___ I will tell to a partner that 2-dimensional shapes as being polygons that are plane figures.</td>
</tr>
<tr>
<td>___ I will identify 2-d shapes by drawing and labeling examples.</td>
</tr>
<tr>
<td>___ I will sort shapes based on a common attribute.</td>
</tr>
<tr>
<td>___ I will discuss with a partner and write down how at least two shapes can share a common attribute using words, gestures, or pictures.</td>
</tr>
<tr>
<td>I can identify types of quadrilaterals.</td>
</tr>
<tr>
<td>___ I will define what a quadrilateral is to a partner using pictures, words, or gestures.</td>
</tr>
<tr>
<td>___ I will identify all quadrilaterals as having only 4 sides as a special property.</td>
</tr>
<tr>
<td>___ I will draw an example of each specific quadrilateral and label accurately.</td>
</tr>
<tr>
<td>a. rhombus b. rectangle c. square</td>
</tr>
<tr>
<td>___ I will draw a non-example of a quadrilateral and explain why it does not belong.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.G 2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as ¼ of the area of the shape.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can divide shapes into equal sized areas and label the parts as unit fractions.</td>
</tr>
<tr>
<td>___ I will tell how area as an attribute for a shape and describe the whole shape.</td>
</tr>
<tr>
<td>___ I will divide the shape into equal sized areas and show different ways of partitioning.</td>
</tr>
<tr>
<td>___ I will label each part of the area as a unit fraction.</td>
</tr>
<tr>
<td>___ I will identify the fractional name for the shaded area of the shape.</td>
</tr>
<tr>
<td>___ I will describe the fractional part of the unshaded part.</td>
</tr>
<tr>
<td>___ I will discuss how each part of the areas describes the whole.</td>
</tr>
</tbody>
</table>

© Abby Benson